Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.165
Filtrar
1.
Cells ; 13(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38607074

RESUMO

The human respiratory system is susceptible to a variety of diseases, ranging from chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis to acute respiratory distress syndrome (ARDS). Today, lung diseases represent one of the major challenges to the health care sector and represent one of the leading causes of death worldwide. Current treatment options often focus on managing symptoms rather than addressing the underlying cause of the disease. The limitations of conventional therapies highlight the urgent clinical need for innovative solutions capable of repairing damaged lung tissue at a fundamental level. Pluripotent stem cell technologies have now reached clinical maturity and hold immense potential to revolutionize the landscape of lung repair and regenerative medicine. Meanwhile, human embryonic (HESCs) and human-induced pluripotent stem cells (hiPSCs) can be coaxed to differentiate into lung-specific cell types such as bronchial and alveolar epithelial cells, or pulmonary endothelial cells. This holds the promise of regenerating damaged lung tissue and restoring normal respiratory function. While methods for targeted genetic engineering of hPSCs and lung cell differentiation have substantially advanced, the required GMP-grade clinical-scale production technologies as well as the development of suitable preclinical animal models and cell application strategies are less advanced. This review provides an overview of current perspectives on PSC-based therapies for lung repair, explores key advances, and envisions future directions in this dynamic field.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Fibrose Pulmonar , Animais , Humanos , Células Endoteliais , Células-Tronco Pluripotentes Induzidas/metabolismo , Pulmão , Fibrose Pulmonar/metabolismo
2.
Lipids Health Dis ; 23(1): 98, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570797

RESUMO

Pulmonary fibrosis (PF) is a severe pulmonary disease with limited available therapeutic choices. Recent evidence increasingly points to abnormal lipid metabolism as a critical factor in PF pathogenesis. Our latest research identifies the dysregulation of low-density lipoprotein (LDL) is a new risk factor for PF, contributing to alveolar epithelial and endothelial cell damage, and fibroblast activation. In this study, we first integrative summarize the published literature about lipid metabolite changes found in PF, including phospholipids, glycolipids, steroids, fatty acids, triglycerides, and lipoproteins. We then reanalyze two single-cell RNA-sequencing (scRNA-seq) datasets of PF, and the corresponding lipid metabolomic genes responsible for these lipids' biosynthesis, catabolism, transport, and modification processes are uncovered. Intriguingly, we found that macrophage is the most active cell type in lipid metabolism, with almost all lipid metabolic genes being altered in macrophages of PF. In type 2 alveolar epithelial cells, lipid metabolic differentially expressed genes (DEGs) are primarily associated with the cytidine diphosphate diacylglycerol pathway, cholesterol metabolism, and triglyceride synthesis. Endothelial cells are partly responsible for sphingomyelin, phosphatidylcholine, and phosphatidylethanolamines reprogramming as their metabolic genes are dysregulated in PF. Fibroblasts may contribute to abnormal cholesterol, phosphatidylcholine, and phosphatidylethanolamine metabolism in PF. Therefore, the reprogrammed lipid profiles in PF may be attributed to the aberrant expression of lipid metabolic genes in different cell types. Taken together, these insights underscore the potential of targeting lipid metabolism in developing innovative therapeutic strategies, potentially leading to extended overall survival in individuals affected by PF.


Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Análise da Expressão Gênica de Célula Única , Metabolismo dos Lipídeos/genética , Células Endoteliais/metabolismo , Fosfolipídeos/metabolismo , Colesterol/metabolismo , Fosfatidilcolinas
3.
Respir Res ; 25(1): 160, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600524

RESUMO

BACKGROUND: No effective therapies for pulmonary fibrosis (PF) exist because of the unclear molecular pathogenesis and the lack of effective therapeutic targets. Zinc finger protein 451 (ZNF451), a transcriptional regulator, plays crucial roles in the pathogenesis of several diseases. However, its expression pattern and function in PF remain unknown. This study was designed to investigate the role of ZNF451 in the pathogenesis of lung fibrosis. METHODS: GEO dataset analysis, RT‒PCR, and immunoblot assays were used to examine the expression of ZNF451 in PF; ZNF451 knockout mice and ZNF451-overexpressing lentivirus were used to determine the importance of ZNF451 in PF progression; and migration assays, immunofluorescence staining, and RNA-seq analysis were used for mechanistic studies. RESULTS: ZNF451 is downregulated and negatively associated with disease severity in PF. Compared with wild-type (WT) mice, ZNF451 knockout mice exhibited much more serious PF changes. However, ZNF451 overexpression protects mice from BLM-induced pulmonary fibrosis. Mechanistically, ZNF451 downregulation triggers fibroblast activation by increasing the expression of PDGFB and subsequently activating PI3K/Akt signaling. CONCLUSION: These findings uncover a critical role of ZNF451 in PF progression and introduce a novel regulatory mechanism of ZNF451 in fibroblast activation. Our study suggests that ZNF451 serves as a potential therapeutic target for PF and that strategies aimed at increasing ZNF451 expression may be promising therapeutic approaches for PF.


Assuntos
Fibrose Pulmonar , Animais , Camundongos , Bleomicina/toxicidade , Fibroblastos/metabolismo , Pulmão/metabolismo , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Transdução de Sinais
4.
Pestic Biochem Physiol ; 200: 105831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582594

RESUMO

Paraquat (PQ) causes fatal poisoning that leads to systemic multiple organ fibrosis, and transforming growth factor (TGF)-ß1 plays a critical role in this process. In this study, we aimed to investigate the effects of AZ12601011 (a small molecular inhibitor of TGFßRI) on PQ-induced multiple organ fibrosis. We established a mouse model of PQ in vivo and used PQ-treated lung epithelial cell (A549) and renal tubular epithelial cells (TECs) in vitro. Haematoxylin-eosin and Masson staining revealed that AZ12601011 ameliorated pulmonary, hepatic, and renal fibrosis, consistent with the decrease in the levels of fibrotic indicators, alpha-smooth muscle actin (α-SMA) and collagen-1, in the lungs and kidneys of PQ-treated mice. In vitro data showed that AZ12601011 suppressed the induction of α-SMA and collagen-1 in PQ-treated A549 cells and TECs. In addition, AZ12601011 inhibited the release of inflammatory factors, interleukin (IL)-1ß, IL-6, and tumour necrosis factor-α. Mechanistically, TGF-ß and TGFßRI levels were significantly upregulated in the lungs and kidneys of PQ-treated mice. Cellular thermal shift assay and western blotting revealed that AZ12601011 directly bound with TGFßRI and blocked the activation of Smad3 downstream. In conclusion, our findings revealed that AZ12601011 attenuated PQ-induced multiple organ fibrosis by blocking the TGF-ß/Smad3 signalling pathway, suggesting its potential for PQ poisoning treatment.


Assuntos
Lesão Pulmonar Aguda , Paraquat , Fibrose Pulmonar , Camundongos , Animais , Paraquat/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Fator de Crescimento Transformador beta/toxicidade , Fator de Crescimento Transformador beta1/toxicidade , Fator de Crescimento Transformador beta1/metabolismo , Colágeno/toxicidade , Colágeno/metabolismo , Fatores de Crescimento Transformadores/toxicidade
5.
J Ethnopharmacol ; 327: 118008, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38458343

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Compendium of Materia Medica and the Classic of Materia Medica, the two most prominent records of traditional Chinese medicine, documented the therapeutic benefits of Ganoderma sinense particularly in addressing pulmonary-related ailments. Ganoderma formosanum, an indigenous subspecies of G. sinense from Taiwan, has demonstrated the same therapeutic properties. AIM OF THE STUDY: The aim of this study is to identify bioactive compounds and evaluate the potential of G. formosanum extracts as a novel treatment to alleviate pulmonary fibrosis (PF). Using an in-house drug screening platform, two-stage screening was performed to determine their anti-fibrotic efficacy. METHODS AND MATERIALS: G. formosanum was fractionated into four partitions by solvents of different polarities. To determine their antifibrotic and pro-apoptotic properties, the fractions were analyzed using two TGF-ß1-induced pulmonary fibrosis cell models (NIH-3T3) and human pulmonary fibroblast cell lines, immunoblot, qRT-PCR, and annexin V assays. Subsequently, transcriptomic analysis was conducted to validate the findings and explore possible molecular pathways. The identification of potential bioactive compounds was achieved through UHPLC-MS/MS analysis, while molecular interaction study was investigated by multiple ligands docking and molecular dynamic simulations. RESULTS: The ethyl acetate fraction (EAF) extracted from G. formosanum demonstrated substantial anti-fibrotic and pro-apoptotic effects on TGF-ß1-induced fibrotic models. Moreover, the EAF exhibited no discernible cytotoxicity. Untargeted UHPLC-MS/MS analysis identified potential bioactive compounds in EAF, including stearic acid, palmitic acid, and pentadecanoic acid. Multiple ligands docking and molecular dynamic simulations further confirmed that those bioactive compounds possess the ability to inhibit TGF-ß receptor 1. CONCLUSION: Potential bioactive compounds in G. formosanum were successfully extracted and identified in the EAF, whose anti-fibrotic and pro-apoptotic properties could potentially modulate pulmonary fibrosis. This finding not only highlights the EAF's potential as a promising therapeutic candidate to treat pulmonary fibrosis, but it also elucidates how Ganoderma confers pulmonary health benefits as described in the ancient texts.


Assuntos
Ganoderma , Materia Medica , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Materia Medica/farmacologia , Espectrometria de Massas em Tandem , Fibrose , Pulmão
6.
Bioorg Chem ; 146: 107286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537336

RESUMO

Pulmonary fibrosis (PF) poses a significant challenge with limited treatment options and a high mortality rate of approximately 45 %. Qingkailing Granule (QKL), derived from the Angong Niuhuang Pill, shows promise in addressing pulmonary conditions. Using a comprehensive approach, combining network pharmacology analysis with experimental validation, this study explores the therapeutic effects and mechanisms of QKL against PF for the first time. In vivo, QKL reduced collagen deposition and suppressed proinflammatory cytokines in a bleomycin-induced PF mouse model. In vitro studies demonstrated QKL's efficacy in protecting cells from bleomycin-induced injury and reducing collagen accumulation and cell migration in TGF-ß1-induced pulmonary fibrosis cell models. Network pharmacology analysis revealed potential mechanisms, confirmed by western blotting, involving the modulation of PI3K/AKT and SRC/STAT3 signaling pathways. Molecular docking simulations highlighted interactions between QKL's active compounds and key proteins, showing inhibitory effects on epithelial damage and fibrosis. Collectively, these findings underscore the therapeutic potential of QKL in alleviating pulmonary inflammation and fibrosis through the downregulation of PI3K/AKT and SRC/STAT3 signaling pathways, with a pivotal role attributed to its active compounds.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Colágeno/metabolismo , Colágeno/farmacologia , Colágeno/uso terapêutico , Fibrose , Bleomicina/efeitos adversos
7.
Mol Genet Genomics ; 299(1): 33, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478174

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary fibrosis disease that is fatal. Mesenchymal stem cells (MSCs)-secreted exosomes (exos) have been linked to improving PF. Moreover, exosomal microRNAs (miRs) can control the growth of numerous diseases, including lung disorders. Our bioinformatics analysis showed that miR-30b was downregulated in tissue samples from surgical remnants of biopsies or lungs explanted from patients with IPF who underwent pulmonary transplantation. This suggests that miR-30b plays an important role in both the pathogenesis and treatment of IPF. Herein, this research was designed to ascertain the mechanism of MSCs-exos-packaged miR-30b in alleviating PF. The serum was harvested from idiopathic PF (IPF) patients with interstitial pneumonia caused by dermatomyositis and the MLE12 lung epithelial cell fibrosis model was built with TGF-ß1 (10 ng/mL), followed by miR-30b expression determination. TGF-ß1-stimulated MLE12 cells were co-incubated with exos from MSCs with or without Spred2 or Runx1 overexpression, followed by measurement of cell viability and apoptosis. After establishing the IPF mouse model with bleomycin and injecting exos and/or silencing and overexpressing adenovirus vectors, fibrosis evaluation was conducted. In mice and cells, the expression of TGF-ß1, TNF-α, and IL-1ß was tested via ELISA, and the levels of E-cad, ZO-1, α-SMA, and collagen type I via western blot analysis. The promoters of miR-30b, Runx1, and Spred2 were investigated. miR-30b was downregulated in the serum of IPF patients and TGF-ß1-stimulated MLE12 cells. Mechanistically, miR-30b inhibited Spred2 transcription by negatively targeting Runx1. MSCs-exos or MSCs-exo-miR-30b decreased the apoptosis, inflammation, and fibrosis while increasing their viability in TGF-ß1-stimulated MLE12 cells, which was annulled by overexpressing Runx1 or Spred2. Exo-miR-30b decreased Runx1 expression to downregulate Spred2, reducing fibrosis and inflammation in IPF mice. Our results indicated that MSCs-exos-encapsulated miR-30b had a potential function to inhibit PF and part of its function may be achieved by targeting RUNX1 to reduce the Spred2 transcription level. Moreover, this work offered evidence and therapeutic targets for therapeutic strategies for managing clinical PF in patients.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Exossomos/genética , Exossomos/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Repressoras/metabolismo
8.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474239

RESUMO

It is well known that extreme heat events happen frequently due to climate change. However, studies examining the direct health impacts of increased temperature and heat waves are lacking. Previous reports revealed that heatstroke induced acute lung injury and pulmonary dysfunction. This study aimed to investigate whether heat exposure induced lung fibrosis and to explore the underlying mechanisms. Male C57BL/6 mice were exposed to an ambient temperature of 39.5 ± 0.5 °C until their core temperature reached the maximum or heat exhaustion state. Lung fibrosis was observed in the lungs of heat-exposed mice, with extensive collagen deposition and the elevated expression of fibrosis molecules, including transforming growth factor-ß1 (TGF-ß1) and Fibronectin (Fn1) (p < 0.05). Moreover, epithelial-mesenchymal transition (EMT) occurred in response to heat exposure, evidenced by E-cadherin, an epithelial marker, which was downregulated, whereas markers of EMT, such as connective tissue growth factor (CTGF) and the zinc finger transcriptional repressor protein Slug, were upregulated in the heat-exposed lung tissues of mice (p < 0.05). Subsequently, cell senescence examination revealed that the levels of both senescence-associated ß-galactosidase (SA-ß-gal) staining and the cell cycle protein kinase inhibitor p21 were significantly elevated (p < 0.05). Mechanistically, the cGAS-STING signaling pathway evoked by DNA damage was activated in response to heat exposure (p < 0.05). In summary, we reported a new finding that heat exposure contributed to the development of early pulmonary fibrosis-like changes through the DNA damage-activated cGAS-STING pathway followed by cellular senescence.


Assuntos
Fibrose Pulmonar , Masculino , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Temperatura Alta , Camundongos Endogâmicos C57BL , Pulmão/patologia , Fator de Crescimento Transformador beta1/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Senescência Celular , Nucleotidiltransferases/metabolismo
9.
Cell Commun Signal ; 22(1): 172, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461312

RESUMO

Pulmonary fibrosis (PF) is a progressive interstitial inflammatory disease with a high mortality rate. Patients with PF commonly experience a chronic dry cough and progressive dyspnoea for years without effective mitigation. The pathogenesis of PF is believed to be associated with dysfunctional macrophage polarization, fibroblast proliferation, and the loss of epithelial cells. Thus, it is of great importance and necessity to explore the interactions among macrophages, fibroblasts, and alveolar epithelial cells in lung fibrosis, as well as in the pro-fibrotic microenvironment. In this review, we discuss the latest studies that have investigated macrophage polarization and activation of non-immune cells in the context of PF pathogenesis and progression. Next, we discuss how profibrotic cellular crosstalk is promoted in the PF microenvironment by multiple cytokines, chemokines, and signalling pathways. And finally, we discuss the potential mechanisms of fibrogenesis development and efficient therapeutic strategies for the disease. Herein, we provide a comprehensive summary of the vital role of macrophage polarization in PF and its profibrotic crosstalk with fibroblasts and alveolar epithelial cells and suggest potential treatment strategies to target their cellular communication in the microenvironment.


Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose , Macrófagos/metabolismo , Citocinas/metabolismo , Transdução de Sinais , Fibroblastos/metabolismo
10.
Ecotoxicol Environ Saf ; 273: 116162, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458067

RESUMO

Airborne fine particulate matter (PM2.5) can cause pulmonary inflammation and even fibrosis, however, the underlying molecular mechanisms of the pathogenesis of PM2.5 exposure have not been fully appreciated. In the present study, we explored the dynamics of glycolysis and modification of histone lactylation in macrophages induced by PM2.5-exposure in both in vivo and in vitro models. Male C57BL/6 J mice were anesthetized and administrated with PM2.5 by intratracheal instillation once every other day for 4 weeks. Mouse RAW264.7 macrophages and alveolar epithelial MLE-12 cells were treated with PM2.5 for 24 h. We found that PM2.5 significantly increased lactate dehydrogenase (LDH) activities and lactate contents, and up-regulated the mRNA expression of key glycolytic enzymes in the lungs and bronchoalveolar lavage fluids of mice. Moreover, PM2.5 increased the levels of histone lactylation in both PM2.5-exposed lungs and RAW264.7 cells. The pro-fibrotic cytokines secreted from PM2.5-treated RAW264.7 cells triggered epithelial-mesenchymal transition (EMT) in MLE-12 cells through activating transforming growth factor-ß (TGF-ß)/Smad2/3 and VEGFA/ERK pathways. In contrast, LDHA inhibitor (GNE-140) pretreatment effectively alleviated PM2.5-induced pulmonary inflammation and fibrosis via inhibiting glycolysis and subsequent modification of histone lactylation in mice. Thus, our findings suggest that PM2.5-induced glycolysis and subsequent modification of histone lactylation play critical role in the PM2.5-associated pulmonary fibrosis.


Assuntos
Pneumonia , Fibrose Pulmonar , Masculino , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Histonas/metabolismo , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo , Material Particulado/metabolismo , Macrófagos , Glicólise
11.
Sci Total Environ ; 923: 171396, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438032

RESUMO

The presence of respiratory diseases demonstrates a positive correlation with atmospheric fine particulate matter (PM2.5) exposure. The respiratory system is the main target organ affected by PM2.5, and exposure to PM2.5 elevates the likelihood of developing pulmonary fibrosis (PF). In this study, lung epithelial cell (BEAS-2B) and fibroblast (NIH-3T3) were used as in vitro exposure models to explore the mechanisms of PF. PM2.5 exposure caused mitochondrial damage in BEAS-2B cells and increased a fibrotic phenotype in NIH-3T3 cells. Epithelial cells and fibroblasts have different fates after PM2.5 exposure due to their different sensitivities to trigger autophagy. Exposure to PM2.5 inhibits mitophagy in BEAS-2B cells, which hinders the removal of damaged mitochondria and triggers cell death. In this process, the nuclear retention of the mitophagy-related protein Parkin prevents it from being recruited to mitochondria, resulting in mitophagy inhibition. In contrast, fibroblasts exhibit increased levels of autophagy, which may isolate PM2.5 and cause abnormal fibroblast proliferation and migration. Fibrotic phenotypes such as collagen deposition and increased α-actin also appear in fibroblasts. Our results identify PM2.5 as a trigger of PF and delineate the molecular mechanism of autophagy in PM2.5 induced PF, which provides new insights into the pulmonary injury.


Assuntos
Poluentes Atmosféricos , Fibrose Pulmonar , Animais , Camundongos , Material Particulado/toxicidade , Material Particulado/análise , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Pulmão , Autofagia
12.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542511

RESUMO

Pulmonary fibrosis results from the deposition and proliferation of extracellular matrix components in the lungs. Despite being an airway disorder, pulmonary fibrosis also has notable effects on the pulmonary vasculature, with the development and severity of pulmonary hypertension tied closely to patient mortality. Furthermore, the anatomical proximity of blood vessels, the alveolar epithelium, lymphatic tissue, and airway spaces highlights the need to identify shared pathogenic mechanisms and pleiotropic signaling across various cell types. Sensory nerves and their transmitters have a variety of effects on the various cell types within the lungs; however, their effects on many cell types and functions during pulmonary fibrosis have not yet been investigated. This review highlights the importance of gaining a new understanding of sensory nerve function in the context of pulmonary fibrosis as a potential tool to limit airway and vascular dysfunction.


Assuntos
Hipertensão Pulmonar , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/metabolismo , Pulmão/metabolismo , Vias Aferentes , Hipertensão Pulmonar/metabolismo , Mucosa Respiratória/metabolismo
13.
Redox Biol ; 71: 103102, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430684

RESUMO

Peroxidasin (PXDN) is a secreted heme peroxidase that catalyzes the oxidative crosslinking of collagen IV within the extracellular matrix (ECM) via intermediate hypobromous acid (HOBr) synthesis from hydrogen peroxide and bromide, but recent findings have also suggested alternative ECM protein modifications by PXDN, including incorporation of bromide into tyrosine residues. In this work, we sought to identify the major target proteins for tyrosine bromination by HOBr or by PXDN-mediated oxidation in ECM from mouse teratocarcinoma PFHR9 cells. We detected 61 bromotyrosine (BrY)-containing peptides representing 23 proteins in HOBr-modified ECM from PFHR9 cells, among which laminins displayed the most prominent bromotyrosine incorporation. Moreover, we also found that laminin α1, laminin ß1, and tubulointerstitial nephritis antigen-like (TINAGL1) contained BrY in untreated PFHR9 cells, which depended on PXDN. We extended these analyses to lung tissues from both healthy mice and mice with experimental lung fibrosis, and in lung tissues obtained from human subjects. Analysis of ECM-enriched mouse lung tissue extracts showed that 83 ECM proteins were elevated in bleomycin-induced fibrosis, which included various collagens and laminins, and PXDN. Similarly, mRNA and protein expression of PXDN and laminin α/ß1 were enhanced in fibrotic mouse lung tissues, and also in mouse bone-marrow-derived macrophages or human fibroblasts stimulated with transforming growth factor ß1, a profibrotic growth factor. We identified 11 BrY-containing ECM proteins, including collagen IV α2, collagen VI α1, TINAGL1, and various laminins, in both healthy and mouse fibrotic lung tissues, although the relative extent of tyrosine bromination of laminins was not significantly increased during fibrosis. Finally, we also identified 7 BrY-containing ECM proteins in human lung tissues, again including collagen IV α2, collagen VI α1, and TINAGL1. Altogether, this work demonstrates the presence of several bromotyrosine-modified ECM proteins, likely involving PXDN, even in normal lung tissues, suggesting a potential biological function for these modifications.


Assuntos
Bromatos , Proteínas da Matriz Extracelular , Fibrose Pulmonar , Humanos , Animais , Camundongos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Brometos/efeitos adversos , Brometos/metabolismo , Laminina/genética , Laminina/metabolismo , Matriz Extracelular/metabolismo , Pulmão/metabolismo , 60581 , Colágeno Tipo IV/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Tirosina/metabolismo
14.
Int Immunopharmacol ; 131: 111774, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38489971

RESUMO

Corona Virus Disease 2019 (COVID-19) is an infectious disease that seriously endangers human life and health. The pathological anatomy results of patients who died of the COVID-19 showed that there was an excessive inflammatory response in the lungs. It is also known that most of the COVID-19 infected patients will cause different degrees of lung damage after infection, and may have pulmonary fibrosis remaining after cure. Macrophages are a type of immune cell population with pluripotency and plasticity. In the early and late stages of infection, the dynamic changes of the balance and function of M1/M2 alveolar macrophages have a significant impact on the inflammatory response of the lungs. In the early stage of pulmonary fibrosis inflammation, the increase in the proportion of M1 type is beneficial to clear pathogenic microorganisms and promote the progress of inflammation; in the later stage of fibrosis, the increase in the number of M2 type macrophages can inhibit the inflammatory response and promote the degradation of fibrosis. As a potential treatment drug for new coronavirus pneumonia, favipiravir is in the process of continuously carried out relevant clinical trials. This study aims to discuss whether the antiviral drug favipiravir can suppress inflammation and immune response by regulating the M1/M2 type of macrophages, thereby alleviating fibrosis. We established a bleomycin-induced pulmonary fibrosis model, using IL-4/13 and LPS/IFN-γ cell stimulating factor to induce macrophage M1 and M2 polarization models, respectively. Our study shows that favipiravir exerts anti-fibrotic effects mainly by reprogramming M1/M2 macrophages polarization, that is, enhancing the expression of anti-fibrotic M1 type, reducing the expression of M2 type pro-fibrotic factors and reprogramming it to anti-fibrotic phenotype. Aspects of pharmacological mechanisms, favipiravir inhibits the activation of JAK2-STAT6 and JAK2-PI3K-AKT signaling by targeting JAK2 protein, thereby inhibiting pro-fibrotic M2 macrophages polarization and M2-induced myofibroblast activation. In summary, favipiravir can reduce the progression of pulmonary fibrosis, we hope to provide a certain reference for the treatment of pulmonary fibrosis.


Assuntos
Amidas , COVID-19 , Pneumonia , Fibrose Pulmonar , Pirazinas , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Bleomicina/efeitos adversos , Fosfatidilinositol 3-Quinases/metabolismo , Macrófagos , Inflamação/metabolismo , Fibrose , Pneumonia/metabolismo , COVID-19/metabolismo
15.
Int Immunopharmacol ; 131: 111834, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38493696

RESUMO

Pulmonary fibrosis is a chronic and progressively deteriorating lung condition that can be replicated in laboratory animals by administering bleomycin, a chemotherapeutic antibiotic known for its lung fibrosis-inducing side effects. L-arginine, a semi-essential amino acid, is recognized for its diverse biological functions, including its potential to counteract fibrosis. This study aimed to evaluate the antifibrotic properties of L-arginine on bleomycin-induced pulmonary fibrosis in rats. The administration of a single intratracheal dose of bleomycin resulted in visible and microscopic damage to lung tissues, an uptick in oxidative stress markers, and an elevation in inflammatory, apoptotic, and fibrotic indicators. A seven-day treatment with L-arginine post-bleomycin exposure markedly improved the gross and histological architecture of the lungs, prevented the rise of malondialdehyde and carbonyl content, and enhanced total antioxidant capacity alongside the activities of antioxidant enzymes. Also, L-arginine attenuated the expression of the pro-fibrotic factors, transforming growth factor-ß and lactate dehydrogenase in bronchoalveolar lavage fluid. In the lung tissue, L-arginine reduced collagen deposition, hydroxyproline concentration, and mucus production, along with decreasing expression of α-smooth muscle actin, tumor necrosis factor-α, caspase-3, matrix metalloproteinase-9, and ß-catenin. Moreover, it boosted levels of nitric oxide and upregulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), heme oxygenase-1 (HO-1), and E-cadherin and downregulating the expression of ß-catenin. These findings suggest that L-arginine has preventive activities against bleomycin-induced pulmonary fibrosis. This effect can be attributed to the increased production of nitric oxide, which modulates the HO-1/PPAR-γ/ß-catenin axis.


Assuntos
Fibrose Pulmonar , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Bleomicina/efeitos adversos , Heme Oxigenase-1/metabolismo , Antioxidantes/farmacologia , beta Catenina/metabolismo , PPAR gama/metabolismo , Óxido Nítrico/metabolismo , Pulmão/patologia , Fibrose , Arginina/uso terapêutico
16.
Biochem Biophys Res Commun ; 708: 149791, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38518719

RESUMO

Pulmonary alveoli are functional units in gas exchange in the lung, and their dysfunctions in lung diseases such as interstitial pneumonia are accompanied by fibrotic changes in structure, elevating the stiffness of extracellular matrix components. The present study aimed to test the hypothesis that such changes in alveoli stiffness induce functional alteration of epithelial cell functions, exacerbating lung diseases. For this, we have developed a novel method of culturing alveolar epithelial cells on polyacrylamide gel with different elastic modulus at an air-liquid interface. It was demonstrated that A549 cells on soft gels, mimicking the modulus of a healthy lung, upregulated mRNA expression and protein synthesis of surfactant protein C (SFTPC). By contrast, the cells on stiff gels, mimicking the modulus of the fibrotic lung, exhibited upregulation of SFTPC gene expression but not at the protein level. Cell morphology, as well as cell nucleus volume, were also different between the two types of gels.


Assuntos
Células Epiteliais Alveolares , Fibrose Pulmonar , Humanos , Células Epiteliais Alveolares/metabolismo , Pulmão/metabolismo , Alvéolos Pulmonares , Fibrose Pulmonar/metabolismo , Células Epiteliais/metabolismo , Géis/metabolismo
17.
Int Immunopharmacol ; 130: 111734, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38422768

RESUMO

Pulmonary fibrosis is an irreversible and progressive lung disease with limited treatments available. Selinexor (Sel), an orally available, small-molecule, selective inhibitor of XPO1, exhibits notable antitumor, anti-inflammatory and antiviral activities. However, its potential role in treating pulmonary fibrosis is unknown. C57BL/6J mice were used to establish a pulmonary fibrosis model by intratracheal administration of bleomycin (BLM). Subsequently, Sel was administered intraperitoneally. Our data demonstrated that Sel administration ameliorated BLM-induced pulmonary fibrosis by increasing mouse body weights; reducing H&E staining, Masson staining scores, and shadows in mouse lung computed tomography (CT) images, decreasing the total cell and neutrophil counts in the lung and bronchoalveolar lavage fluid (BALF); and decreasing the levels of TGF-ß1. We next confirmed that Sel reduced the deposition of extracellular matrix (ECM) components in the lungs of BLM-induced pulmonary fibrosis mice. We showed that collagen I, alpha-smooth muscle actin (α-SMA), and hydroxyproline levels and the mRNA levels of Col1a1, Eln, Fn1, Ctgf, and Fgf2 were reduced. Mechanistically, tandem mass tags (TMT)- based quantitative proteomics analysis revealed a significant increase in GBP5 in the lungs of BLM mice but a decrease in that of BLM + Sel mice; this phenomenon was confirmed by western blotting and RT-qPCR. NLRP3 inflammasome signaling was significantly enriched in both the BLM group and BLM + Sel group based on GO and KEGG analyses of differentially expressed proteins between the groups. Furthermore, Sel reduced the expression of NLRP3, cleaved caspase 1, and ASC in vivo and in vitro, and decreased the levels of IL-1ß, IL-18, and IFN-r in lung tissue and BALF. SiRNA-GBP5 inhibited NLRP3 signaling in vitro, and overexpression of GBP5 inhibited the protective effect of Sel against BLM-induced cellular injury. Taken together, our findings indicate that Sel ameliorates BLM-induced pulmonary fibrosis by targeting GBP5 via NLRP3 inflammasome signaling. Thus, the XPO1 inhibitor - Sel might be a potential therapeutic agent for pulmonary fibrosis.


Assuntos
Hidrazinas , Fibrose Pulmonar , Triazóis , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Inflamassomos/metabolismo , Bleomicina/efeitos adversos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/patologia
18.
J Immunol ; 212(7): 1221-1231, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334455

RESUMO

Pulmonary fibrosis is a fatal condition characterized by fibroblast and myofibroblast proliferation and collagen deposition. TGF-ß plays a pivotal role in the development of pulmonary fibrosis. Therefore, modulation of TGF-ß signaling is a promising therapeutic strategy for treating pulmonary fibrosis. To date, however, interventions targeting TGF-ß have not shown consistent efficacy. CD109 is a GPI-anchored glycoprotein that binds to TGF-ß receptor I and negatively regulates TGF-ß signaling. However, no studies have examined the role and therapeutic potential of CD109 in pulmonary fibrosis. The purpose of this study was to determine the role and therapeutic value of CD109 in bleomycin-induced pulmonary fibrosis. CD109-transgenic mice overexpressing CD109 exhibited significantly attenuated pulmonary fibrosis, preserved lung function, and reduced lung fibroblasts and myofibroblasts compared with wild-type (WT) mice. CD109-/- mice exhibited pulmonary fibrosis comparable to WT mice. CD109 expression was induced in variety types of cells, including lung fibroblasts and macrophages, upon bleomycin exposure. Recombinant CD109 protein inhibited TGF-ß signaling and significantly decreased ACTA2 expression in human fetal lung fibroblast cells in vitro. Administration of recombinant CD109 protein markedly reduced pulmonary fibrosis in bleomycin-treated WT mice in vivo. Our results suggest that CD109 is not essential for the development of pulmonary fibrosis, but excess CD109 protein can inhibit pulmonary fibrosis development, possibly through suppression of TGF-ß signaling. CD109 is a novel therapeutic candidate for treating pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Bleomicina/efeitos adversos , Fator de Crescimento Transformador beta/metabolismo , Pulmão/patologia , Fibroblastos/metabolismo , Camundongos Transgênicos , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/metabolismo , Antígenos CD/metabolismo , Proteínas Ligadas por GPI/metabolismo
19.
Cell Signal ; 117: 111075, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311302

RESUMO

OBJECTIVE: To confirm the mechanism of dynamic-related protein 1 (Drp1)-mediated mitochondrial fission through ROS/HIF-1α-mediated regulation of lipid metabolic reprogramming in the progression of pulmonary fibrosis (PF). METHODS: A mouse model of PF was established by intratracheal instillation of bleomycin (BLM) (2.5 mg/kg). A PF cell model was constructed by stimulating MRC-5 cells with TGF-ß (10 ng/mL). Pathological changes in the lung tissue and related protein levels were observed via tissue staining. The indicators related to lipid oxidation were detected by a kit, and lipid production was confirmed through oil red O staining. Inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). RT-qPCR, Western blotting and immunofluorescence staining were used to detect the expression of genes and proteins related to the disease. We used CCK-8 and EdU staining to confirm cell proliferation, flow cytometry was used to confirm apoptosis and ROS levels, α-SMA expression was detected by immunofluorescence staining, and mitochondria were observed by MitoTracker staining. RESULTS: The BLM induced lung tissue structure and alveolar wall thickening in mice. Mitochondrial fission was observed in MRC-5 cells induced by TGF-ß, which led to increased cell proliferation; decreased apoptosis; increased expression of collagen, α-SMA and Drp1; and increased lipid oxidation and inflammation. Treatment with the Drp1 inhibitor mdivi-1 or transfection with si-Drp1 attenuated the induction of BLM and TGF-ß. For lipid metabolism, lipid droplets were formed in BLM-induced lung tissue and in TGF-ß-induced cells, fatty acid oxidation genes and lipogenesis-related genes were upregulated, ROS levels in cells were increased, and the expression of HIF-1α was upregulated. Mdivi-1 treatment reversed TGF-ß induction, while H2O2 treatment or OE-HIF-1α transfection reversed the effect of mdivi-1. CONCLUSION: In PF, inhibition of Drp1 can prevent mitochondrial fission in fibroblasts and regulate lipid metabolism reprogramming through ROS/HIF-1α; thus, fibroblast activation was inhibited, alleviating the progression of PF.


Assuntos
Fibrose Pulmonar , Animais , Camundongos , Peróxido de Hidrogênio/farmacologia , 60645 , Dinâmica Mitocondrial , Fibrose Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Metabolismo dos Lipídeos
20.
Ecotoxicol Environ Saf ; 273: 116106, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377782

RESUMO

Silica nanoparticle (SiNP) exposure induces severe pulmonary inflammation and fibrosis, but the pathogenesis remains unclear, and effective therapies are currently lacking. To explore the mechanism underlying SiNPs-induced pulmonary fibrosis, we constructed in vivo silica exposure animal models and in vitro models of silica-induced macrophage pyroptosis and fibroblast transdifferentiation. We found that SiNP exposure elicits upregulation of pulmonary proteins associated with pyroptosis, including NLRP3, ASC, IL-1ß, and GSDMD, while the immunofluorescence staining co-localized NLRP3 and GSDMD with macrophage-specific biomarker F4/80 in silica-exposed lung tissues. However, the NLRP3 inhibitor MCC950 and classical anti-fibrosis drug pirfenidone (PFD) were found to be able to alleviate silica-induced collagen deposition in the lungs. In in vitro studies, we exposed the fibroblast to a conditioned medium from silica-induced pyroptotic macrophages and found enhanced expression of α-SMA, suggesting increased transdifferentiation of fibroblast to myofibroblast. In line with in vivo studies, the combined treatment of MCC950 and PFD was demonstrated to inhibit the expression of α-SMA and attenuate fibroblast transdifferentiation. Mechanistically, we adopted high throughput RNA sequencing on fibroblast with different treatments and found activated signaling of relaxin and osteoclast differentiation pathways, where the expression of the dysregulated genes in these two pathways was examined and found to be consistently altered both in vitro and in vivo. Collectively, our study demonstrates that SiNP exposure induces macrophage pyroptosis, which subsequently causes fibroblast transdifferentiation to myofibroblasts, in which the relaxin and osteoclast differentiation signaling pathways play crucial roles. These findings may provide valuable references for developing new therapies for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Relaxina , Animais , Fibrose Pulmonar/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dióxido de Silício/toxicidade , Relaxina/metabolismo , Relaxina/farmacologia , Piroptose/fisiologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Fibroblastos , Fibrose , Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...